

The Bell Inequality

An easy approach using a Venn Diagram

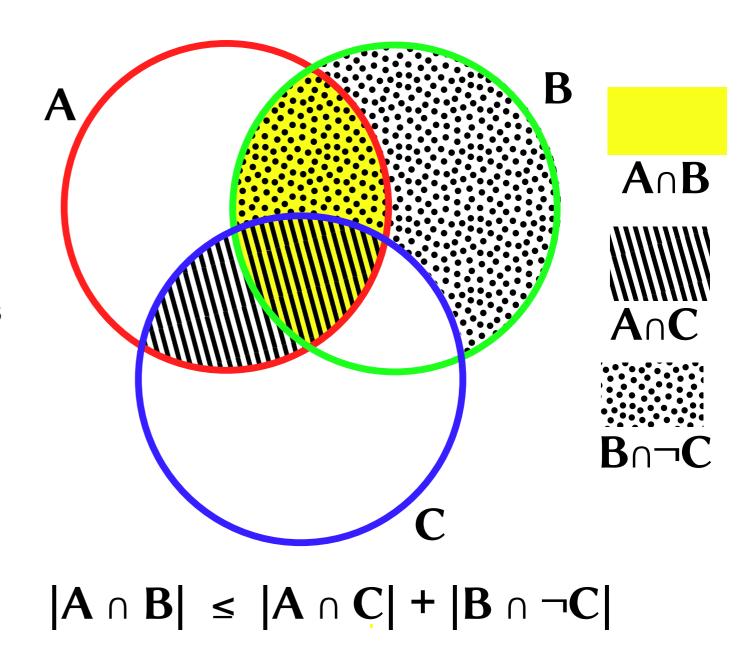
David McQuillan September 2025

A Bell Inequality

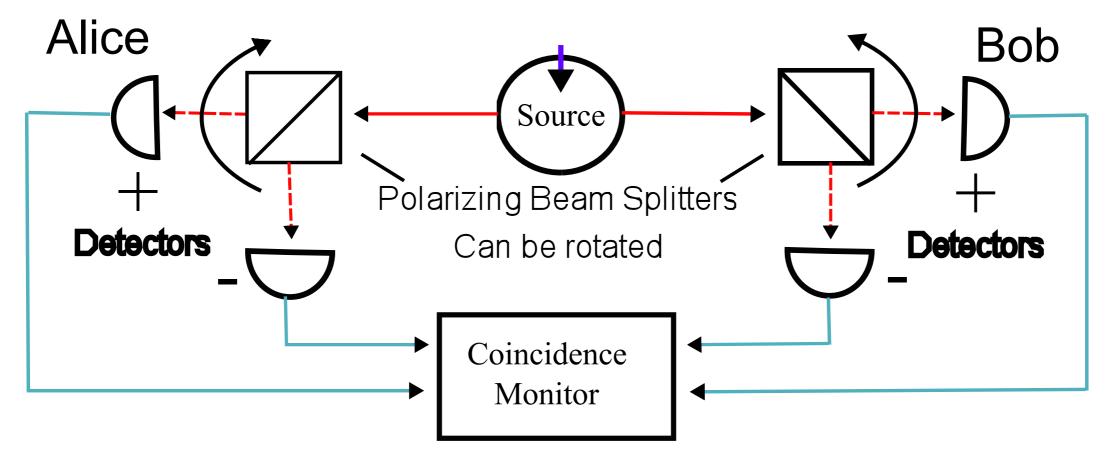
Note there are two properties per term in the inequality

The inequality is pretty obviously true where properties A, B, and C can be measured for each thing in the sets.

A Bell Inequality as there are other inequalities also used in Bell tests. This one is due to Eugene Wigner.



Bell test with polarised light



Source can use SPDC (spontaneous parametric down-conversion) for instance to generate pairs of entagled photons

Light through a polarizing filter

- If light is passed through a polarizing filter then any light that comes out is polarized.
- The amount that passes through a second polarizing filter is $\cos^2\theta$ where θ is the difference in the polarizing angle of the two filters.
- For entangled photons going through the Bell test if the polarizing beam splitters are at an angle of θ relative to each other, then if a photon is detected going through a detector on one side it has a chance of $\cos^2\theta$ of going through the corresponding detector on the other side, just like the original photon would do with its polarization.

Hidden variables?

- If the angle difference is 0° all the light will pass through the same detectors at both ends, either both + or both
 -.
- The easiest theory to account for this is that the photons started off with a hidden state so they know for every angle what result they should give.
- That means that whether a photon would go through detector + or - is fixed for every angle when it leaves the source and tests with different angles should satisfy Bell's Inequality.

A Bell Test – Spooky Action at a Distance

- Alice and Bob turn their polarizing Beam Splitters at random to angles 0°, 30°, and 60°. What do they get?
- Property A is if one has angle 0° and they detect +.
- Property B is the same for 30° and property C for 60°
- Then $|A \cap B| = \cos^2 30^\circ = \frac{3}{4}$, $|A \cap C| = \cos^2 60^\circ = \frac{1}{4}$
- $|\mathbf{B} \cap \neg \mathbf{C}| = 1 \cos^2 30^\circ = 1 \frac{3}{4} = \frac{1}{4}$
- But $\frac{3}{4} \le \frac{1}{4} + \frac{1}{4}$ is false! Bell's Inequality is violated!